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Feeling the forces: atomic force microscopy in cell biology
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Abstract

Atomic force microscopy allows three-dimensional imaging and measurements of unstained and uncoated

biological samples in air or fluid. Using this technology it offers resolution on the nanometer scale and detection of

temporal changes in the mechanical properties, i.e. surface stiffness or elasticity in live cells and membranes. Various

biological processes including ligand-receptor interactions, reorganization, and restructuring of the cytoskeleton

associated with cell motility that are governed by intermolecular forces and their mode of detection will be discussed.
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Introduction

The atomic force microscope (AFM), first described by Binnig et al. [3], has become a powerful tool in

biology that can provide three-dimensional images of surface topography of biological specimens in

ambient liquid or gas environments. Unlike other techniques, atomic force microscopy can use samples

with just minor preparation, e.g. staining, coating etc., over a large range of temperatures and in repetitive

studies. The high resolution (in the nanometer range) allows topographical imaging of samples such as

DNA molecules [26], protein adsorption or crystal growth [41], and living cells adsorbed on biomaterials

[4]. In addition to topographical measurements, AFM is also capable of complementary techniques that

provide information on other surface properties, e.g. stiffness, hardness, friction, or elasticity.
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In this minireview we first introduce the principle of AFM and then describe its various application

forms before discussing some specific measurements in more detail.
Principle of AFM and imaging methods

Principle of operation

The key element of the AFM is the cantilever (Fig. 1). It consists of one or more beams of silicon or

silicon nitride of 100–500 Am in length and 0.5–5 Am in thickness. At the end of the cantilever a sharp tip

is mounted to sense the force between the sample and tip. For normal topographic imaging, the tip is

brought into continuous or intermittent contact with the sample as it raster-scans over the surface. An

optical system is then used to measure the changes of the laser beam reflected from the gold-coated back of

the cantilever onto a position-sensitive photodiode (PSPD), which can measure changes in the position of

the incident laser as small as 1 nm. The instrument is available in several operating modes that can be

chosen depending on the sample, environment, and measurements required. For more detailed reading

refer to Schoenenberger et al. [38].

Contact mode

The contact mode is the original AFM imaging mode, which can be implemented in both air and fluid.

The AFM probe, end-mounted on a flexible cantilever, is brought into contact with the sample surface

and raster-scanned across the surface by a piezoelectric scanner. Changes in the cantilever deflection

during scanning are monitored and kept constant using an electronic feedback circuit. Topographic
Fig. 1. A schematic representation of an atomic force microscope. The tip is mounted on a soft cantilever spring and the

deflection of the cantilever is detected by an optical lever using a laser beam. The cantilever can be positioned in (x, y, z)

direction. A light microscope is used for positioning the tip on the sample.
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images are generated by mapping the vertical distance the scanner moves as it maintains a constant

deflection at every lateral data point. Probe tracking forces—held consistently below 100pN—have been

made possible on biological specimens in fluid using this technique.

Tapping mode

The tapping mode is a more recent development in which the imaging probe is vertically oscillated at or

near the resonant frequency of the integrated cantilever. An electronic feedback circuit maintains the

oscillation at a constant amplitude during scanning. The image is produced by mapping the vertical

distance the scanner moves as it maintains a constant oscillation amplitude at each lateral data point. The

key advantage of the tapping mode is the elimination of the lateral shear forces present in contact mode,

which, for many specimens, can damage the structure being imaged. TappingmodeAFMcan be conducted

in air or fluid.

Phase imaging

Phase imaging is relatively new and has the advantage of being able to be performed at the same time as

topographic imagingwith tappingmode, i.e. both topographic and phase images can be obtained in a single

scan. Because the interactions between the tip and the surface depend not only on the topography of the

sample but also on other characteristics (such as hardness, elasticity, adhesion, or friction), the movements

of the cantilever to which the tip is attached depend also on these properties. In phase imaging, the phase of

the sinusoidal oscillation of the cantilever is measured relative to the driving signal applied to the cantilever

to cause the oscillation. Phase images are produced by recording this phase shift during the tapping mode

scan. Phase imaging can detect, for example, different components in polymers related to their stiffness

[27] or areas of different hydrophobicity in hydrogels immersed in saline solutions.

Force mode

The atomic force microscope can also probe elastic properties or adhesion on a surface by generating

force curves. These curves are generated by performing controlled vertical tip-sample interactions, without

lateral scanning movement and while recording the cantilever’s deflections. Force curves measure

nanonewton-range vertical forces applied to the surface, and allow the estimation of the nanomechanical

properties of the samples, e.g. the elasticity of living cells [1]. The ability to coat the tip with different

molecules (proteins, lipids) has increased the utility of force curves in understanding the specific attraction

between a ligand and its receptor [9,40]. This technique can also be used to measure charge densities on

surfaces [18], to estimate the folding force of biomolecules like titin [34], and to measure forces associated

with polymer elongation [35]. Fig. 2 shows the (elastic) Young’s modulus for a wide range of materials.

Other force microscope techniques

Lateral force microscopy (LFM) is useful for mapping frictional properties on surfaces. In this mode,

the torsional forces applied to the cantilever are monitored during contact mode scanning. These forces

are related to the friction on the surface, and the LFM data can be recorded simultaneously with contact

mode topographical data. In force modulation mode, a small vertical oscillating movement is applied to



Fig. 2. Young’s (elastic) moduli of different materials. The diagram shows a spectrum from very hard to very soft: steel > bone >

collagen > protein crystals > gelatin, rubber > cells.
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the tip while in contact with the sample. This causes the cantilever to bend, and the measure of the

bending amplitude reveals the stiffness or elasticity of the surface, since a stiff area induces a larger

cantilever deflection than does a soft area. In nanoindentation a diamond tip is used to indent the surface

at a known force. By measuring the depths of indentations, it is possible to evaluate the relative hardness

of materials. For more detailed reading, refer to Cappella and Dietler [5].
Imaging of biological samples

The unique capability of AFM to study the dynamic behavior of living and fixed cells has opened up

new fields in cell biology. Recent examples of dynamic in vitro analysis demonstrate some of the unique

capabilities that AFM provides for cellular analysis. For example, plasma membrane in migrating

epithelial cells has been imaged in real time. The dynamic membrane invagination process was observed

in the presence of calcium, and when calcium levels were reduced, the process was prevented. Lipidic pore

formation of 30 nm could also be resolved during calcium reduction performed on living renal epithelial

cells. Cytoskeletal dimples in the plasma membrane and membrane-bound filaments were resolved to fifty

nanometers on small patches of plasma membrane [30,31]. More recently, Chasan et al. [6] showed, using

AFM to study CFTR-containing liposomes in solution deposited on freshly cleaved mica, that these cystic

fibrosis transmembrane conductance regulators (CFTR) directly interact with the actin cytoskeleton.

Another group used AFM to observe platelet activation, showing microfilament structure, granula

transport towards the cell cortex, and the redistribution of cellular components during activation [11]. In

addition, cell membranes can be labeledwith immunogold, opening the door to high-resolutionmapping of

cell surface antigens [29]. Many of these studies have taken advantage of existing protocols to immobilize

samples on suitable substrates such as direct mounting to glass coverslips or polylysine-coated glass. This

provides a uniquely simplified environment for cellular imaging free from stains and fixatives.

Other techniques have been developed by taking advantage of the atomic force microscope’s ability to

micromanipulate different materials. By increasing the scanning force on isolated patches of rat liver

membranes, the upper membrane layer can be stripped away from the extracellular surface’s hexagonal

arrays of gap junctions. These studies were performed in situ under near-physiologic conditions. The

surface structure was resolved down to three nanometers with the membranes fully submerged in
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phosphate buffered saline (PBS) [20,21]. Results such as these demonstrate just some of AFM’s unique

capabilities to provide information on cellular structure and organization. Goldmann and Ezzell [14] and

Goldmann et al. [15,16], studied the elasticity of both wild-type F9 mouse embryonic carcinoma and

vinculin-deficient F9 cell lines using AFM, and rheologic as well as cell indentation techniques. The

indentation of the cells by scanning AFM was used to produce a viscoleastic map of the two cell types

(Fig. 3). Transfecting the vinculin-deficient cells expressing the head or tail or the head and tail region of

vinculin separately showed that only intact vinculin restores the viscoelastic properties [17].

There has been recent success imaging individual proteins and other small molecules using AFM.

Rigid fibrils, such as collagen, can easily be imaged by the microscope. The periodic 70 nm banding

pattern and 30 nm subbands are clearly resolved [13]. Smaller molecules that do not have a high affinity

for common AFM substrates have been successfully imaged by employing selective affinity-binding

procedures. Thiol incorporation at both the 5Vand 3Vends of short PCR products has been shown to

confer a high affinity for ultra-flat gold substrates [19]. Another example of using AFM to image the cell

surface is a similar approach that was used to immobilize antibodies (IgG) on treated mica. In this case,

the low affinity that IgG molecules have for mica was overcome by cloning a metal-chelating peptide

into the carboxy-terminus sequence of the IgG’s heavy chain. The recombinant sequence was transfected

into cells that expressed the complementary light chain. The purified IgG containing the metal-chelating

peptide was shown to bind in a region-specific manner to nickel-treated mica [23]. Covalent binding of

biological structures to derivatized glass substrates has enabled high-resolution imaging of some samples

that are not stable on untreated glass substrates. Bacteriophage T4 polyheads do not seem to adhere

tightly to glass coverslips. However, after derivatization with a photoreactive cross-linker, the tubular

polyheads, and the hexagonal capsomere can be resolved [24]. In another example, the lattice structure

of the HPI layer of D. radiodurans can be clearly imaged using this technique. The atomic force

microscope’s ability to provide accurate height measurements demonstrated that the native HPI layer

was preserved with close correlation to freeze-dried unstained HPI layer data generated by electron

microscopy. In this study the HPI layer is imaged in buffer with 1 nm lateral resolution and 0.1 nm

vertical resolution [25]. New approaches such as these have provided a solid foundation from which

research is expanding into more complexity. Higher-resolution imaging of a variety of small molecules

continues to improve at a rapid pace.
Fig. 3. Elasticity map of a wild-type F9 cell (A) and a vinculin-deficient F9 cell (B). The local elastic or Young’s modulus is

obtained by taking 64 � 64 force curves while raster-scanning over the cell surface and subsequently analyzing each individual

force scan. The vertical gray scale bar indicates the local differences in elastic moduli in (Pa). The overall elastic difference

between these species was calculated at f 20% [14]. The horizontal black bar equals 10 Am.
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In the last few years, AFM has opened even more exciting new avenues in biology and biophysics

for probing cells. Imaging the surface topography at (sub) nanometer resolution as well as measuring

local physical properties by pulling on macromolecules under physiological conditions has provided

new insight into the nano-mechanical properties of e.g. titin, cadherin, ATP synthase, single DNA,

elastin [2,7,8,36,39]. Reproducible images of native OmpF porin at f 0.5 nm lateral and f 0.1 nm

vertical resolution—at variable electrolytes to detect the electrostatic potential—could be directly

correlated with various structural and functional states [28,33]. Imaging and nano-manipulation by

AFM has also included the disruption of antibody-antigen bonds, the dissection of biological

membranes, the nano-dissection of protein complexes, as well as the controlled modulation of protein

conformations [12]. Recently, Oesterhelt et al. [32] combined AFM with single molecule force

spectroscopy and described the unfolding pathway of individual bacteriorhodopsin molecules, and

Scheuring et al. [37] generated images of single native membrane proteins at (sub) nanometer

resolution.
Future directions

While new techniques for conventional AFM continue to evolve, scientists are investigating the

atomic force microscope’s ability to measure force in the nanonewton range in order to quantify

molecular binding interactions. Using the well-characterized interaction of biotin and streptavidin, AFM

is able to differentiate between the binding forces of biotin, desthiobiotin, and iminobiotin [10]. Binding

forces can also be quantified when a small number of molecular interactions are taking place, providing

piconewton binding measurements for individual molecular pairs [22]. This could have broad

applications to a variety of important ligand-receptor interactions. There are many exciting possibilities

for scanning probe microscopy and there is no other tool that allows such convenience and flexibility at

this level of resolution. Regardless of scientific goals, instruments such as the nanoscope will open the

door to a whole new world of molecular science.
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